Unsteady Electro-Hydrodynamic Stagnating Point Flow of Hybridized Nanofluid via a Convectively Heated Enlarging (Dwindling) Surface with Velocity Slippage and Heat Generation

نویسندگان

چکیده

In (Al2O3-Cu/H2O) hybridized nanofluid (HYNF) is an unsteady electro-hydrodynamic stagnation point flow. A stretchable (shrinkable) surface that was convectively heated studied in the past. addition to traditional nonslip surface, heat generating (absorbing) and velocity slippage constraints are deliberated this research. An obtained nonlinear scheme resolved by homotopy analysis method. Governing parameters electric field parameters, is, dimensionless including magnetic parameter, Prandtl quantity, factor, Eckert factor. We discuss detail effects of these variables on movement problems thermal transmission characteristics. Increasing values magneto force increased temperature. number lowered For increase temperature recognized. The symmetric form geometry model displayed improved fluid flow same amount both above below streamline, while it decreased pressure level. more source uses HYNF over entire area, supplied plate, but with a sink, opposite effect observed.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transient Three-Dimensional Thermal Analysis of a Slab with internal heat generation and heated by a Point Moving Heat Source

In this work, analysis of transient three-dimensional heat transfer in a slab with internal heat generation and heated by a point moving heat source along its axis is carried out using integral transforms methods. The heat input into slab or workpiece by the moving heat source is considered in the model. From the results, it was established that the temperature of the material during the heat t...

متن کامل

Study on Thermal and Hydrodynamic Indexes of a Nanofluid Flow in a Micro Heat Sink

The paper numerically presents laminar forced convection of a nanofluid flowing in a duct at microscale. Results were compared with both analytical and experimental data and observed good concordance with previous studies available in the literature. Influences of Brinkman and Reynolds number on thermal and hydrodynamic indexes have been investigated. For a given nanofluid, no change in efficie...

متن کامل

Scaling Group Transformation for MHD Boundary Layer Slip Flow of a Nanofluid over a Convectively Heated Stretching Sheet with Heat Generation

Steady viscous incompressibleMHD laminar boundary layer slip flow of an electrically conducting nanofluid over a convectively heated permeable moving linearly stretching sheet has been investigated numerically. The effects of Brownian motion, thermophoresis, magnetic field, and heat generation/absorption are included in the nanofluid model. The similarity transformations for the governing equat...

متن کامل

MHD Non-Newtonian Nanofluid Flow over a Permeable Stretching Sheet with Heat Generation and Velocity Slip

The problem of magnetohydrodynamics boundary layer flow and heat transfer on a permeable stretching surface in a second grade nanofluid under the effect of heat generation and partial slip is studied theoretically. The Brownian motion and thermophoresis effects are also considered. The boundary layer equations governed by the PDE’s are transformed into a set of ODE’s with the help of local simi...

متن کامل

MHD Three-Dimensional Stagnation-Point Flow and Heat Transfer of a Nanofluid over a Stretching Sheet

In this study, the three-dimensional magnetohydrodynamic (MHD) boundary layer of stagnation-point flow in a nanofluid was investigated. The Navier–Stokes equations were reduced to a set of nonlinear ordinary differential equations using a similarity transform. The similarity equations were solved for three types of nanoparticles: copper, alumina and titania with water as the base fluid, to inve...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Symmetry

سال: 2022

ISSN: ['0865-4824', '2226-1877']

DOI: https://doi.org/10.3390/sym14102136